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This paper presents the results from direct numerical simulations of homogeneous ferrofluid turbulence with
a spatially uniform, applied oscillating magnetic field. Due to the strong coupling that exists between the
magnetic field and the ferrofluid, we find that the oscillating field can affect the characteristics of the turbulent
flow. The magnetic field does work on the turbulent flow and typically leads to an increased rate of energy loss
via two dissipation modes specific to ferrofluids. However, under certain conditions this magnetic work results
in injection, or a forcing, of turbulent kinetic energy into the flow. For the cases considered here, there is no
mean shear and the mean components of velocity, vorticity, and particle spin rate are all zero. Thus, the effects
shown are entirely due to the interactions between the turbulent fluctuations of the ferrofluid and the magnetic
field. In addition to the effects of the oscillation frequency, we also investigate the effects of the choice of
magnetization equation. The calculations focus on the approximate centerline conditions of the relatively low
Reynolds number turbulent ferrofluid pipe flow experiments described previously �K. R. Schumacher et al.,
Phys. Rev. E 67, 026308 �2003��.
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I. INTRODUCTION

Ferrofluids are stable colloidal suspensions of nanoscale
ferromagnetic particles that exhibit strong responses to ap-
plied magnetic fields. For example, a steady magnetic field
applied to a shear flow hinders the free-rotation of the sus-
pended particles, and results in an increase in effective vis-
cosity �1� due to an additional rotational frictional resistance.
This frictional resistance is also exhibited when a steady
magnetic field is applied to homogenous ferrofluid turbu-
lence, which has no mean shear �2�. A time-dependent mag-
netic field has this same effect at low oscillation frequencies,
but, under special conditions, the field can cause the sus-
pended particles to rotate faster than the local fluid rotation
rate �3�. This phenomena, which has been shown experimen-
tally for laminar shear flows, results in a decrease in the
effective viscosity relative to its zero-field value �4,5�. Tur-
bulent ferrofluid pipe flow experiments �6� examined the ef-
fects of an oscillating magnetic field on the pressure drop at
different flow rates, magnetic field strengths, and oscillation
frequencies. However, the effects of oscillating magnetic
fields on ferrofluid flows in the turbulent regime are not fully
understood. In this paper, the effects of an oscillating mag-
netic field on the characteristics of a homogeneous turbulent
ferrofluid flow are examined using direct numerical simula-
tion �DNS� of the governing equations of ferrohydrodynam-
ics. The equations for turbulent ferrofluid flows are described
more fully in Schumacher et al. �2�.

Homogeneous turbulent flow is studied with an unidirec-
tionally applied magnetic field, in the present case in the x
direction, that oscillates in time. The applied oscillating mag-
netic fields considered here are characterized by Hx
=Hox

cos��t�, where Hox
is the amplitude and � is the os-

cillation frequency. One of the unique features of ferrofluids
is that particles can be made to spin somewhat independently
of the flow so that their angular velocity is not necessarily
one-half the vorticity. First, the effect of the three magneti-
zation equations are studied. Then one of those magnetiza-
tion equations is used for a variety of magnetic field ampli-
tudes, frequency of oscillation, and magnetic time constants
�B. The results are compared with, and sometimes bounded
by, those for a Newtonian fluid and a ferrofluid with a large,
steady magnetic field. Finally, we examine the effects of an
oscillating field under the same conditions as the pipe flow
experiments in �6�.

Bacri et al. �4� studied the effects of ��B when an oscil-
lating magnetic field is applied to laminar ferrofluid Poi-
seuille pipe flow with an axial magnetic field that oscillates
in time. Their theoretical and experimental work showed that
the effective viscosity is increased for slow oscillations but is
decreased for faster oscillations. The ratio �eff /��1 when
��B�1, and �eff /��1 when ��B�1, where �eff is the
measured effective viscosity of the fluid, � is the viscosity of
the ferrofluid when the magnetic field is turned off, and �B is
the Brownian particle relaxation time. When ��B�1, the
period of the oscillating magnetic field is bigger than �B, the
magnetic field changes slowly, and the magnetic field hinders
particle rotation: the rotation rate of the particles is less than
that of the surrounding fluid. The additional friction within
the substructure of the fluid caused by the fluid having to
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flow around the particles shows up macroscopically as an
increased viscosity. When ��B�1, the period of the oscil-
lating magnetic field is smaller than �B. Then, the time-
average of the torque term in the spin equation is positive
and the net effect is to rotate the particles faster than the
surrounding fluid. This injects energy into the flow and
shows up macroscopically as a reduced viscosity. The pipe
flow system of Bacri et al. �4� had a mean shear in laminar
flow, but we examine the same phenomena in homogeneous
turbulent flow with zero mean shear.

II. EQUATIONS AND NUMERICAL METHOD

A. Governing equations

Dynamic ferrofluid flows are well described by the equa-
tions of ferrohydrodynamics �7�. The continuity and momen-
tum equations are

� · u = 0, �1�

�� �u

�t
+ u · �u� = − �p + 2� � · e

+ � � � �2� − � � u� + �oM · �H ,

�2�

where � is the density, � is the viscosity, � is the vortex
viscosity, �o is the permeability of free space, u is the ve-
locity, p is the pressure, � is the spin, e=0.5��u+�uT� is
the rate of strain tensor, M is the magnetization vector, and
H is the applied magnetic field. The internal angular momen-
tum equation �i.e., spin equation� is

�I� ��

�t
+ u · ��� = 2	� � · s + 2��� � u − 2��

+ �oM � H , �3�

where I is the moment of inertia of a single ferrofluid par-
ticle, 	� is the spin viscosity, and s=0.5���+��T� is the
spin-rate gradient tensor. The spin equation can be simplified
to give

� =
1

2
� � u +

�o

4�
M � H �4�

since the moment of inertia of the ferrofluid particles is so
small and the spin viscosity term leads to negligible effects
�2�. Note that the magnetic torque influences ���u−2��,
which then provides a new force in the momentum equation.

A magnetization equation is necessary to form a closed
set of equations. Different magnetization equations have
been proposed in the literature �e.g., �8–10��. Most simula-
tions described here employ the Martsenyuk et al. �9� equa-
tion, which is based on the Fokker-Planck equation using the
effective field method for dilute ferrofluids. The Martsenyuk,
et al. equation is

�M

�t
= − u · �M + �1

2
� � u� � M

−
3
o

2�BM2�1 −
3L��e�

�e
�M � �M � H�

−
1

�B
�M −

3
oL��e�
�e

H	 , �5�

where 
o=limH→0�M0 /H�= ��omMS� / �3kBT� is the initial
magnetic susceptibility, � is the magnetic particle relaxation
time, which is taken to be the same as �B here. The parameter
�ei is the nondimensional effective magnetic field for which
the nonequilibrium magnetization, Mi, is an equilibrium
magnetization. The effective field is related to Mi by the
equation

Mi = MSL��e�
�ei

�e
,

where

�ei =
�omHei

kBT
and L��� =

1

tanh���
−

1

�
.

Here, m is the magnetic moment of a single particle, kB is
Boltzmann’s constant, T is the absolute temperature, and Ms
is the saturation magnetization.

Section III A utilizes two other versions of the magneti-
zation equation: the Shliomis �8� equation and the Felderhof
and Kroh �10� equation. The Shliomis equation �8� is given
as

�M

�t
= − u · �M + � � M −

1

�
�M − M0� , �6�

where M0=MSL���H /H and H=
Hx
2+Hy

2+Hz
2. The Felder-

hof and Kroh equation �10�, which is based on irreversible
thermodynamics, is

�M

�t
= − u · �M + � � M −


o

�
�H − Heq� , �7�

where Heq is the local equilibrium magnetic field.
Finally, to complete the set of equations, Maxwell’s equa-

tions are

� · B = 0, �8�

� � H = 0. �9�

Note that the magnetization is related to B and H via B
��0�M+H�.

B. Energetics

The total turbulent kinetic energy in a ferrofluid flow con-
sists of a translational component, Et=

1
2�ui�

2, and a rotational
component, Er= 1

2�I�i�
2, where the prime denotes a fluctuat-

ing quantity. The general transport equations for Et and Er
can be derived from the momentum and internal angular mo-
mentum equations, respectively �2�. For the specific case of
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homogeneous turbulence, the turbulent energy equations are
reduced, by ignoring spatial gradients of all averaged quan-
tities, to give

dEt

dt
= −  − A − �b + � , �10�

dEr

dt
= − C + �b + �s, �11�

dU

dt
=  + A + C. �12�

Equation �12� represents the internal energy equation when
there are no heat sources or fluxes. The terms on the right-
hand side of Eqs. �10�–�12� represent different modes, or
pathways, of energy transfer within the system. The term
=2�eij�eij� is the classical rate of viscous dissipation of
turbulent kinetic energy, A= 1

4�Ai�Ai� is called the vortex
viscous dissipation rate, where Ai�=2��iklul,k� −2�i��, and
C=2	�sij�sij� is the spin viscous dissipation rate. The term

�b=�i�Ai� represents the work rate done on the spin by asym-
metric stresses, �=ui�Si� is the work rate done on the turbu-
lent flow by the magnetic body forces, where Si�=�oMk�Hi,k� ,
and �s=�i�Qi� denotes the rate of work done by the magnetic
body couple forces on the turbulent flow, and Qi�
=�oiklMk�Hl�. Each of these terms can be directly computed
in our direct turbulence simulations. Thus, Eqs. �10�–�12�
provide a useful framework for investigating how the applied
oscillating magnetic fields affect the physics of the flow.

C. Fluid parameters

The ferrofluid we simulate is the water-based EMG-206,
from Ferrotec, which is the same experimental fluid investi-
gated in previous studies �2,6�. The fluid and magnetic prop-
erties of EMG-206 �determined and described previously
�2,6�� are summarized here in Table I.

D. Numerics and initial velocity

We simulate statistically homogeneous turbulent ferro-
fluid flow in a cube with periodic boundary conditions. For

the oscillating magnetic fields here, we expand the technique
described in Schumacher et al. �2� for steady magnetic fields.
The side length of the cube is L, which is large compared to
the integral length scale of the flow L. The variables are
expanded using a finite Fourier series in each spatial dimen-
sion. For example, the velocity is expanded as

u�x� = �
kx=−N/2

N/2

�
ky=−N/2

N/2

�
kz=−N/2

N/2

û�k�eik·x, �13�

where the wavenumbers kx, ky, and kz range from −N /2 to
N /2. This Fourier expansion is done for each dependent vari-
able. A pseudospectral method is employed to directly solve
the governing equations. The derivatives are efficiently
evaluated in Fourier space and the nonlinear terms are com-
puted in physical space then transformed back to Fourier
space and dealiased. The flow is forced by injecting energy
into the low wavenumber range using the method described
in Zikanov and Thess �11�.

When the particle relaxation time is much smaller than
the Kolmogorov scale and/or the magnetic field changes rap-
idly relative to the smallest scales of turbulence, i.e., ��	

�1, the equations are stiff. In addition, there are 45 required
Fourier transforms per time step for a ferrofluid, as opposed
to 9 for a Newtonian fluid. Thus, the computational cost is
significantly larger than for a Newtonian fluid.

Before the magnetic field is turned on, the flow is allowed
to develop to a statistically stationary state. The initial veloc-
ity field used here is the same as in the steady magnetic field
simulations �2�. We set the energy in the forcing shell �i.e.,
where k�2.5 kmin� to equal 70% of the estimated centerline
turbulent kinetic energy of a steady-state turbulent ferrofluid
pipe flow at Re�3100 �6�. The pipe in �6� has a 0.3 cm
diameter and the turbulent kinetic energy distribution is esti-
mated using a k- model. The properties of the flow before
the magnetic field is turned on are summarized in Table II,
where urms is the root-mean square velocity, T= L

urms
is the

large eddy turnover time, and L= �

2urms
2 k=0

� Et�k�
k dk is the inte-

gral length scale. The Taylor microscale Reynolds number is
Re�=�urms /�, where the Taylor microscale is �=
10�Et /.
The Kolmogorov length and time scales are 	 and �	. Fi-
nally, Pope �12� discusses that the smallest scales of fluid

TABLE I. Ferrofluid �EMG-206� parameters �same as in Ref.
�2��.

Physical parameter Value

T �K� 298.15

� �Pa s� 3.85�10−3

� �kg m−3� 1187.4

m �A m2� 2.5�10−19

Ms �Oe� 164

� ��s� 10

� �Pa s� 0.55�

I �m2� 7.57�10−17

	� �kg m s−1� 2�10−15


o 0.332

TABLE II. Time averaged flow properties of the initial ferrof-
luid velocity field �same as in Ref. �2��.

Flow property Value

urms �cm s−1� 20.63

L �cm� 0.1

T �s� 0.00485

Re� 37.3

� �cm� 0.0586

	 �cm� 0.00487

�	 �s� 7.324�10−4

kmax	 2.0
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motion are well resolved when kmax	�1.5; note that for our
simulations kmax	=2.0.

The value of Re� is low ��37� for the simulated cases. In
view of the smaller time step and fivefold increase in the
number of unknowns, we need to carefully choose the num-
ber of Fourier modes. Kerr �13� performed DNS calculations
of homogeneous flows with a range of Re�=28–56 using 643

modes, and this number of modes was adequate for full res-
olution of the flow. For comparison, Gotoh et al. �14� did
simulations at Re�=460 using 10243 modes, and Kaneda
et al. �15� did simulations at Re�=1200 using 40963 modes.
The flows we are studying are at much smaller values of Re�,
taking values from 36 to 38. Thus, simulations are feasible
using the computational resources of a single desktop PC; we
employ 643 modes in our simulations, and these are con-
firmed by a few calculations using 1283 modes. The spec-
trum of the turbulent kinetic energy is shown in Fig. 1 for
323, 643, and 1283 modes and the solutions with 643 modes
show good agreement with those with 1283 modes for wave
numbers that overlap.

III. RESULTS

A. Effect of magnetization equation

In the homogeneous ferrofluid simulations of Schumacher
et al. �2�, the effects of the choice of magnetization equation
were studied with a constant magnetic field and gave similar
turbulence results at the smaller magnetic fields ���2�. In
this section, we test whether the same is true for an oscillat-
ing field when �=1.92 and ��B=0.02�. Note that in the
ferrofluid pipe flow experiments �6�, the magnetic field mag-
nitude ranges from 0 to 1264 Oe ��=0–7.68�, and the oscil-
lation frequency ranges from 0 to 1000 Hz ���B
=0–0.02��.

For these cases, standard homogeneous turbulence prop-
erties that depend on velocity and vorticity, e.g., the turbu-

lence intensity and classical dissipation rates, are found to be
not significantly affected by the choice of magnetization
equation. This corresponds with the results of Schumacher et
al. �2�. In ferrofluids, the internal angular momentum is more
sensitive to the magnitude of the applied field than velocity
or vorticity. Thus, to further check potential effects, we study
the vortex viscous dissipation A, which depends on the
square of the antisymmetric part of the stress.

Figure 2 shows a limit cycle of A as a function of nor-
malized magnetic field strength for the first few cycles of the
magnetic field. Although the results are similar for all mag-
netization equations, slight deviations are apparent. The de-

viations that occur in the �̄�1 range are due to the magni-
tude of the magnetic field and not the oscillation frequency.
When the magnetic field changes sign in the time cycle and

the magnitude of � is still small ��̄�0.5�, the lines are not
always superimposed. This is despite the fact that the torques

are effectively the same when �̄�0.5 in nonoscillating cases
�2�.

The ratio of magnetic particle relaxation time to period of
oscillation in this case is small, and it has a minimal influ-
ence on the velocity, vorticity, and vortex viscous dissipa-
tion, A, as was the case with a steady field �2�. Thus, the
DNS results at the highest frequency used in the pipe flow
experiment �6� are essentially independent of magnetization
equation as long as ��2. In the following work when
�=7.68�Figs. 2–11� we use the Martsenyuk et al. �9� magne-
tization equation, but use the Shliomis �8� equation when
�=1.92�Fig. 12�.

B. Effect of oscillation frequency

This section demonstrates the effect of the oscillation fre-
quency when �=7.68 and compares with earlier results for a
steady field �2�. The simulations here employ the Mart-
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senyuk et al. �9� magnetization equation. In particular,
changes in the root-mean-square velocity, Taylor microscale,
and spin/vorticity differences are examined. The effect on
effective viscosity and transfer of energy between modes is
also described.

A key nondimensional parameter is ��B, which relates the
relaxation time of the particle to the characteristic time of the
oscillating magnetic field. In the simulations here the values
of ��B are 2� /100, 2� /10, and 2�, respectively ��B
=10 �s�. In all cases, the period of the magnetic field is fast
compared to the Kolmogorov time of the turbulent flow; the
values for the nondimensional product ��	 are 4.6, 46, and
460, respectively ��	=7.324�10−4 s�. The extra number of
discreet time steps required to resolve the magnetic field
makes this a stiff problem.

In Schumacher et al. �2� for a steady magnetic field it was
shown �p. 22� that the time-averaged terms coming from the
magnetic body force and magnetic convection terms could

be ignored. The terms are the magnetic body force in the
momentum equation, �oMkHi,k, and the magnetic convection
term, ukMi,k, in the magnetization equation. This hypothesis
was tested for an oscillating magnetic field by solving the
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problem both including and ignoring these terms for the case
when they would be the biggest: H=1264 Oe and �
=100 kHz. The results for 643 and 1283 modes without the
terms are almost identical to the case with 643 modes includ-

ing the terms. Thus, those terms are not included in the cal-
culations reported here. This reduces the number of Fourier
transforms per time step from 45 to 27.

Figure 3 shows how the normalized root-mean-square
�rms� velocity develops as a function of time for different
frequencies. The nonoscillating case ��=0� represents a
lower limit for the rms velocity. As the field oscillates at a
faster rate, the turbulence intensity increases. The cases with
��B�1 are bounded above by the zero-field case ��=0� at
all times in the simulation. Thus, the rms velocity can be
bounded above and below by the steady results, provided
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��B�1. Schumacher et al. �2� showed that the root-mean-
squared velocity is decreased as the steady magnetic field is
increased; thus the steady results can provide an envelope in
which the solution lies for any frequency with ��B�1.
When ��B�1, the turbulent intensity is higher than the
zero-field case at all times. This implies that the turbulent
flows gain turbulent kinetic energy as ��B increases, at least
up to ��B=2�.

In turbulence, one effect of viscosity is to dampen the
fluid motion at large wave numbers. In general, as viscosity
decreases, turbulent motion persists to smaller and smaller

scales causing the kinetic energy spectrum to broaden and
the rms velocity to increase. The effect of applying the os-
cillating field when ��B�1 is similar to an increased effec-
tive viscosity in our homogeneous system, and a field with
��B=2� is analogous to a decreased effective viscosity.
Thus, the concluding observation of Bacri et al. �4�, that
�eff /��1 when ��B�1 for laminar pipe flow is verified
numerically to apply to homogeneous turbulence.

Figure 4 shows how the Taylor microscale develops as a
function of time. For the cases here, when the ��B gets
larger, the Taylor microscale gets smaller. As with the rms
velocity, when ��B�1 the Taylor microscale is bounded for
all times by results for �=7.68, nonoscillating field, and re-
sults for a zero-field case. When ��B�1, the Taylor micro-
scale is lower than the zero-field case at all times. This im-
plies that the turbulent length scales decrease as ��B
increases, at least up to ��B=2�.

Next we look at the spin and vorticity behavior over one
complete cycle of the magnetic field. The spin is a variable
for ferrofluid simulations, and it is directly influenced by
both the flow and magnetic field. The spin to vorticity ratio
provides information on the net spin-up effect of the par-
ticles. Here, we investigate ��2�i��

2� / �gi�
2�, where gi�

=iklul,k� is the vorticity. When this ratio is equal to one, there
is no net effect, but when it is greater than one, the particles
are on average spinning faster than the surrounding fluid.
Note that this ratio is related to the mean square magnetic
torque.

First, we observe the spin and vorticity behavior as a
function of time over one complete cycle of the applied mag-
netic field. In Fig. 5, the time behavior of the mean square of
twice the spin rate and the mean square vorticity are shown
for all three oscillating cases over one complete oscillation
cycle of H. The mean squared spin and mean squared vor-
ticity variables are normalized by the mean squared vorticity
of the initial velocity field �t=0�; thus, the normalization
factor is the same in all cases. The solid line is the mean
squared spin, and the line labeled �g2� / �g0

2� is the mean
squared vorticity. The dashed lines represent mean squared
spin values with �=0, �=7.68, and �=� for a steady ��
=0� magnetic field. The time is normalized by the Kolmog-
orov time of the Newtonian fluid. Figure 5 shows that the
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spin exhibits large oscillations while the vorticity is approxi-
mately steady. The mean square spin behavior is periodic in
time, and completes two cycles every time the magnetic field
completes one cycle. Figure 5�a� is at an oscillation fre-

quency of ��B=2� /100�1 kHz� and the spin has a lower
bound determined by the steady case and an approximate
upper bound determined by the vorticity. In Fig. 5�b�, at
��B=2� /10�10 kHz�, the spin has a lower bound deter-
mined by the steady case, but the spin peaks at values about
60% larger than vorticity. At the highest frequency case,
��B=2��100 kHz�, shown in Fig. 5�c�, the spin is above the
vorticity the majority of the time; in this case the spin peaks
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at values about 20% larger than the vorticity and has valleys
that are approximately equal to the vorticity. Thus, under
these conditions there are substantial differences between
twice the spin and the vorticity over a single cycle of H.

In Fig. 6, we examine the relationship between the mean
square value of twice the spin and the magnitude of the os-
cillating magnetic field. The mean square value of twice the
spin at an instant in time is normalized by the mean square
vorticity of the flow at that same instant in time. Each panel
of Fig. 6 has labeled dashed lines that represent the ratio for
the ��=0, �=0�, ��=7.68, �=0�, and ����, �=0� cases.
The large oscillations are approximately periodic and are due
to the rapid variations in the particle spin since the vorticity
is essentially constant over a period of oscillation. In Fig.
6�a�, at ��B=2� /100�1 kHz� the spin to vorticity ratio is
small at high magnetic field strengths. As � is decreased to-
ward zero, the spin to vorticity ratio increases toward a value
of one. In other words, the spin rate approaches the rotation
rate of the fluid as � goes to zero. Briefly after the magnetic
field changes sign, the spin to vorticity ratio goes above 1,

and then promptly begins to decrease toward the �=7.68
steady limit. That is, there is a brief moment after the applied
oscillating field changes sign where the simulations predict
that the particles spin-up and rotate faster than the surround-
ing fluid. In Fig. 6�b�, at ��B=2� /10, the effect described
for Fig. 6�a� is amplified. Once the magnetic field changes
sign, the spin-up of the fluid occurs over a larger range of �.
The spin-up peaks at about �=3.5, and then decreases back
down toward the �=7.68 steady case limit. In Fig. 6�c�, at
��B=2�, the spin ratio is almost always greater than one,
and the spin-up peaks when �=7.68.

There is a hysteresis effect present in the limit-cycle fig-
ures that ensues because of the finite relaxation time of the
particle. The spin to vorticity ratio, at a specific �, depends
on whether the field is increasing or decreasing. The hyster-
esis disappears as ��B goes to zero, because the particle’s
magnetization is always coaligned with the applied changing
field. The hysteresis also disappears as ��B goes to infinity:
no hysteresis is expected to occur because the particle spin
cannot rotate fast enough and becomes uncorrelated with the
applied field; the line would be the same as the �=0 steady
limit line.

Shliomis and Morozov �3� �theory�, Bacri et al. �4�
�theory and experiment�, and Zeuner et al. �5� �experiment�
documented the spin-up effect for time averages in laminar
pipe flow. We show here for turbulent flow there are brief
moments of spin-up that occur even when ��B�1, and that
they occur routinely at high frequency.

Energy terms that involve velocity only �e.g., the turbu-
lent kinetic energy and classical viscous dissipation rate� do
not change significantly during the time it takes the magnetic

TABLE III. Time averages of the turbulent kinetic energy and
classical viscous dissipation shown in Fig. 12.

Case
�Et�

�cm2 s−2�
��

�cm2 s−3�

�=0, �=0 634.91 58683

�=0, �=1.92 624.78 54445

��B=0.0012�, �=1.92 629.17 56264

��B=0.008�, �=1.92 629.20 56246

��B=0.02�, �=1.92 629.31 56293

TABLE IV. Time averaged flow properties of the initial ferrof-
luid velocity field.

Flow property Value

urms �cm s−1� 2.5

L �cm� 1.2

T �s� 0.474

Re� 49.0

� �cm� 0.64

	 �cm� 0.046

�	 �s� 0.0625

kmax	 1.5
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FIG. 12. Fractional turbulent kinetic energy �a�, and classical
viscous dissipation �b�, vs normalized time. The oscillation frequen-
cies ��=60, 400, and 1000 Hz� and amplitude ��=1.92� correspond
with experimental conditions in Schumacher et al. �Ref. �6��. The
Shliomis �Ref. �8�� magnetization equation is used.
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field to complete one cycle. However, the energy terms that
involve the spin, e.g., A, �b, and �s, exhibit pronounced
periodic behavior and complete two cycles every time H
completes one. Next, we investigate the limit-cycle behavior
of A and �b. �Note that �b=−�s since the spin viscous
dissipation and moment of inertia terms are negligible.� Fig-
ures 7 and 8 show the limit cycles of A and �b, respectively.
Note that although A is always greater than zero, the �b

exhibits both positive and negative values. As shown in Fig.
7, for each case, A reaches a maximum value when the
magnetic field is strongest, and there is a visual hysteresis in
the limit-cycle plots. The value of vortex viscous dissipation
depends on the magnitude of H and how it changes in time.
This hysteresis effect is due to the finite relaxation time of
the ferrofluid particles. In Fig. 7�b�, after the magnetic field
changes sign, there is a hump in the limit cycle. This occurs
because of the particle spin-up. The parameter �b represents
the transfer rate of kinetic energy to spin energy, and this is
plotted in Fig. 8. The �b ranges from mostly positive values
in Fig. 8�a�, to a range of positive and negative values in Fig.

8�b�, to mostly negative values in Fig. 8�c�. When �b is
positive, the particles are rotating slower than the surround-
ing fluid, and translational kinetic energy is being converted
into rotational kinetic energy. When negative, the particles
are rotating faster than the surrounding fluid, and rotational
kinetic energy is being converted into translational kinetic
energy. In Figs. 8�a� and 8�b�, when the magnetic field
changes sign and rotates the particles faster than the sur-
rounding fluid, the �b drops down into negative values. In
Fig. 8�c�, �b appears to always be negative, meaning that
spin energy is constantly being converted into kinetic energy
of the flow. Thus, when �b is negative, it acts as a forcing
term and leads to a more intense turbulent flow as well as an
additional energy dissipation. In an oscillating field, energy
can flow back and forth between translational and spin ki-
netic energy.

Next, we consider the spectral wave number distribution
of the A�k� and �b�k� energy terms at various instances over
the period of oscillation. Figure 9 illustrates the A�k� spectra
for the 2� /10 case. The three panels of Fig. 10 shows the
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FIG. 13. �a� Fractional turbulent kinetic energy, and �b� classical
viscous dissipation rate vs normalized time. Similar magnetic field
conditions as Fig. 12, but for flow conditions described in Table IV.
The Shliomis �Ref. �8�� magnetization equation is used.
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FIG. 14. Fractional turbulent kinetic energy �a�, and classical
viscous dissipation rate �b�, vs normalized time. The simulation
using 643 Fourier modes is superimposed on the results obtained
when using 1283 modes. Same conditions as the 1000 Hz case in
Fig. 13. The Shliomis �Ref. �8�� magnetization equation is used.
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�b�k� spectra for the 2� /100, 2� /10, and 2� cases. Again,
�b is not strictly positive, and becomes negative over a por-
tion of the oscillation cycle. Therefore, since �b�k� is plotted
on a logarithmic scale in Fig. 10, the solid lines denote where
�b�k� is positive and dashed lines represent ��b�k�� when it is
less than zero. At the different instances over the period of
oscillation, the general shapes of the A�k� and �b�k� spectra
do not change significantly, rather the entire spectrum is just
shifted up or down depending on the magnitude of H at the
specific time.

In Fig. 11, �b is plotted vs time. The �b ranges from
mostly positive values in Fig. 11�a�, to a range of positive
and negative values in Fig. 11�b�, to mostly negative values
in Fig. 11�c�.

C. Homogeneous simulations at experimental conditions

In this section, we examine the homogeneous simulations
at magnetic field amplitude 316 Oe ��=1.92� and oscillation
frequencies of 60, 400, and 1000 Hz. These values corre-
spond to some of the experimental conditions of the turbu-
lent pipe flow experiment of Schumacher et al. �6�. In the
experiment, when the flow was turbulent, changing the os-
cillation frequency in the 60–1000 Hz range at amplitude �
=1.92 had a minimal effect on the measured pressure drop.
Our goal is to examine if our homogeneous simulation re-
sults correspond to these experimental conditions of the tur-
bulent pipe flow experiment of Schumacher et al. �6�. For all
cases in this section, the Shliomis �8� magnetization equation
is employed.

Figure 12 shows the time development of turbulent ki-
netic energy �Et� and classical viscous dissipation �� for
each frequency. The results of the nonoscillating case ��
=1.92, �=0� and the no magnetic field case ��=0� are also
shown. The lines at different � values are not superimposed,
but are bounded by the ��=0� case and ��=1.92, �=0� case.
Time-averaged values �denoted by � · �� of Et and  are given
in Table III and, for the cases at 60, 400, and 1000 Hz, the
�Et� and �� are effectively independent of the frequency of
oscillation. Thus, changing the oscillation frequency within
the experimental range had minimal effect on the time-
averaged turbulence properties. This corresponds well with
the experimental observation of Schumacher et al. �6�.

D. Effect of increasing turbulence scales

We are also interested in comparing the results of Fig. 12
to the turbulence behavior in cases where the magnetic field
oscillates much faster than the Kolmogorov time, i.e., ��	

�1. The homogeneous turbulent flow is adjusted such that
the turbulent time scales are large relative to the period of
oscillation of the magnetic field. The properties of the initial
velocity field are listed in Table IV, where, for example, the

Kolmogorov time is now �	=0.0625 s. The same magnetic
field and ferrofluid parameters used to produce Fig. 11 are
used here: the oscillation frequencies are 60, 400, and 1000
Hz, and the particle relaxation time is 10−6 s. Thus, ��	

changes for these cases, but ��B stays the same. In Fig. 13,
the oscillating cases all differ from the base case and steady
case, but do not differ from each other significantly. The
overall influence of the field on the turbulent kinetic energy
and classical viscous dissipation is almost independent of
increasing the oscillation frequency. Thus, making the mag-
netic field oscillate at 60 Hz has an effect on the turbulence,
but the effect is unchanged with frequencies up to 1000 Hz.
All the simulations shown in Fig. 13 are done with 643

modes, but the difference between the solution with 643

modes and 1283 modes is small �Fig. 14�.

IV. CONCLUSIONS

This paper examines the effects of an axially oscillating
magnetic field on homogeneous ferrofluid turbulence. When
�=1.92 and ��B=0.02�, the flow results are essentially in-
dependent of magnetic equation, and this result can probably
be generalized for all results where ��2 and ��B�0.02�.

When ��B=2�, the particles spin faster than the sur-
rounding fluid, and energy is injected into the system. In
slow laminar pipe flows this result has been observed experi-
mentally �4,5� in terms of a reduced effective viscosity.
These laminar flows of course had a nonzero mean shear
rate, and it is shown here that this phenomenon is possible
for turbulent flows with a zero mean shear as well. The av-
erage vorticity of our system is zero, so the effect must be
due to the fluctuating part of the rotational motion of this
particular turbulent flow. From the results of �b at the high-
est frequency, energy is continually transferred from rota-
tional kinetic energy to translational kinetic energy. For the
lower frequency magnetic fields examined, energy was con-
tinually flowing back and forth between translational and
rotational modes.

In the cases where the magnetic field conditions corre-
sponded to the turbulent pipe flow experiments �6�, the time-
averaged results are almost independent of oscillation fre-
quency. This is consistent with the experimental results that
show an independence of fractional pressure drop on fre-
quency. Finally, we note that, at all times in our simulations,
the turbulent results for an oscillating magnetic field are
bounded between curves for a Newtonian fluid and a ferro-
fluid with a large, steady magnetic field.
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